• 최종편집 2025-06-13(금)

종합
Home >  종합  >  교육

  • 한국항공대 ‘민·군 항공안전 상생협력 세미나’ 개최
    한국항공대학교(총장 허희영)가 지난 12일 교내 항공우주센터에서 공군항공안전단과 함께 ‘민·군 항공안전 상생협력 세미나’를 개최했다. 이번 세미나는 민간과 군이 항공안전관리 분야에서 보유한 지식과 경험을 효과적으로 공유하고, 실질적인 협력 방안을 논의하기 위해 마련됐다. 특히 최근 발생한 무안공항 사고 이후 항공안전 전반에 대한 국민적 관심이 높아진 가운데, 제도적·교육적 차원의 공동 대응 필요성이 더욱 커지고 있는 상황에서 이뤄진 행사다. 이번 행사는 한국항공대학교가 지난 3월 설립한 부속기관인 KAU 항공안전센터가 주최했다. 센터는 항공안전에 필요한 기술 및 정책 연구, 교육, 교류협력을 추진하는 항공안전분야의 산·관·학, 민·관·군 허브 역할을 하고 있다. 총 30여 명의 관계자가 참석한 세미나는 VIP 오찬을 시작으로, 주제 발표와 자유토론으로 구성됐다. 한국항공대 측에서는 허희영 총장을 비롯해 이장룡 KAU 항공안전센터장, 항공운항학과 유병선·김현덕 교수, 황경철 항공안전교육원장, 김인규 비행교육원장 등이 참석했으며, 공군항공안전단에서는 임종표 비행표준실장, 이경선 안전교육연구실장, 정청진 항공안전교육연구과장, 황진태 재난안전교육과장 등 주요 관계자가 함께했다. 이날 주제 발표에서는 한국항공대와 공군항공안전단이 차례로 발표를 맡았다. 한국항공대 측에서는 △황경철 항공안전교육원장이 ‘KAU 항공안전보안교육원 교육과정 발전계획’을, △김현덕 교수가 ‘민간항공의 항공안전데이터 활용현황 및 발전방향’을 발표했고, 공군 측에서는 △이경선 안전교육연구실장이 ‘공군항공안전단 교육과정 발전계획’을, △문영민 조수연구원이 ‘시스템 기반 항공기 조류충돌 안전관리 발전방향’을 발표했다. 이어진 자유토론 시간에는 민·군 항공안전관리의 접점을 찾아 시너지를 극대화할 수 있는 실질적 협력 방안이 논의됐다. 토론은 이장룡 KAU 항공안전센터장이 좌장을 맡아 진행했으며, 각 기관의 현장 경험과 정책적 방향성에 맞는 교육·연구 분야 협력 확대 방안이 주요 의제로 다뤄졌다. 이날 행사에 대해 허희영 총장은 “항공안전은 체계적인 교육과 연구, 정책과 협력이 균형을 이뤄야 성과를 낼 수 있다”며 “이번 세미나는 공군과의 협력 기반을 더욱 굳건히 해 국가 항공안전 체계 전반을 더욱 정교하게 다지는 출발점이 될 것”이라고 밝혔다. 공군항공안전단 임종표 비행표준실장 역시 “이번 세미나를 통해 국가적 항공안전 확보에 민·군이 긴밀히 협력할 수 있는 계기와 기반이 마련됐다”고 말했다. 앞으로 한국항공대와 공군항공안전단은 정기적인 공동 세미나, 항공안전 교육 프로그램 공동 개발, 현장 중심 항공사고 대응 시뮬레이션 교육 등 구체적인 협력 과제를 도출해 항공안전 분야의 실효성 있는 협력 모델을 만들고 중장기적 협력 체계를 구축한다는 계획이다. 한편 한국항공대학교는 대한민국 유일의 항공우주 종합대학으로 1952년 개교했다. 항공기와 인공위성의 제작과 설계, 정비(MRO), 소프트웨어, 인공지능(AI) 등의 공학부터 운항, 항공교통관제, 물류, 경영학에 이르기까지 항공우주 전 분야를 교육하고 연구하는 강소 대학이다.
    • 종합
    • 교육
    2025-06-13
  • 건국대, 매치업 사업 공간컴퓨팅 분야 운영기관으로 선정
    건국대학교(총장 원종필)가 교육부와 국가평생교육진흥원이 주관하는 ‘2025년 산업 맞춤 단기 직무능력 인증과정(매치업)’ 사업의 공간컴퓨팅 분야 운영기관으로 최종 선정됐다. 매치업 사업은 성인 학습자를 대상으로 신산업·신기술 분야의 직무능력 향상을 지원하기 위해 온라인 기반의 교육과정을 개발해 운영하는 사업이다. 올해는 공간컴퓨팅, 지능형 클라우드, 사이버보안 등 3개 분야를 대상으로 운영기관이 선정됐다. 건국대 김경모 교수팀(문화콘텐츠학과, 메타버스융합대학원)은 지난해 ‘3D프린팅’ 분야에 이어 이번 ‘공간컴퓨팅’ 분야에도 연이어 선정되며, 매치업 사업에서 동일 연구책임자가 2개 분야를 운영하는 최초 사례를 기록했다. 또한 건국대학교 차원에서도 2개 분야 동시 선정은 이번이 처음이다. 김 교수팀은 이번 사업을 통해 공간컴퓨팅 분야의 기초·심화 교육과정을 개발·운영하며, 산업현장 중심의 실무 교육을 제공할 예정이다. 교육은 유니티테크놀로지스코리아, 한국마이크로소프트 등 대표 기업과의 협업을 기반으로 진행되며, 실제 산업 요구에 맞춘 실용적 역량 강화를 목표로 한다. 사업단장을 맡은 김경모 교수는 “차세대 산업에서 공간컴퓨팅의 역할이 점차 확대되고 있는 만큼, 현장 적용이 가능한 실무 중심의 교육 콘텐츠를 제공하겠다”며 “협력 기관들과 긴밀히 협업해 산업계 수요에 부합하는 인재 양성에 주력하겠다”고 밝혔다. 매치업 교육과정은 한국형 온라인 공개강좌 누리집 ‘K-MOOC’를 통해 누구나 무료로 수강할 수 있다. 기초 과정 이수 후 선발된 학습자는 심화 과정을 수강할 수 있으며, 교육 이수자는 대표기업과 국가평생교육진흥원이 공동 발급하는 ‘직무능력 인증서’를 받을 수 있다.
    • 종합
    • 교육
    2025-06-12
  • 서울대 송준명 교수팀 '저강도 초음파 활용 종양 크기 줄이는 기술' 논문 발표
    서울대학교 약대 송준명 교수팀은 딥슨바이오가 개발한 저강도 초음파를 이용, 항암제를 종양 미세환경 깊숙이 침투시킴으로써 종양 크기를 줄이는 기술에 대한 논문을 국제 학술지 ‘테라그노스틱스(Theragnostics)’에 게재했다고 12일 밝혔다. 그간 종양 치료에 있어서 혈관이 형성되지 않아 산소 공급이 부족한 저산소 영역은 악성화가 빨라지는 경향을 보이는데다 약물의 침투 효과가 극히 제한적이어서 방사선요법, 화학요법, 수술, 표적치료 등의 치료 효과가 크게 떨어졌다. 이 연구는 단방향의 유체 흐름 특성을 이용, 저강도 초음파를 한쪽 방향에서 조사하는 방식으로 약물을 전달시킴으로써 종양이 살아가는 환경(종양미세환경; TME, tumor microenvironments)에서의 약물 침투 한계를 극복하는 방법을 제시하고 있다. 쥐를 대상으로 한 동물 실험 결과, 저강도 초음파는 담관암(CCA) 관련 종양미세환경의 저산소 영역으로의 약물 전달 효과를 크게 향상시켜 젬시타빈, 시스플라틴 등 항암제 약물 침투 효과가 초음파를 적용하지 않은 그룹에 비해 약 1.8배 개선되는 한편, 약물을 통해 제거한 암세포는 초음파를 적용하지 않은 그룹에 비해 5배 증가했다. 그 결과 담관암의 성장이 현저히 감소했다. 또한 낮은 주파수의 초음파를 조사함으로써 열이 발생하지 않아 세포 손상을 일으키지 않고 안전하게 치료할 수 있는 것으로 나타났다. 이러한 연구 결과는 저산소 영역으로의 항암제 침투가 어려워서 그간 치료에 어려움을 겪어 왔던 위암, 폐암, 간암, 대장암 등 고형암(단단하고 굳은 덩어리 형태의 암) 치료에 있어 저강도 초음파가 안전하면서도 치료효과를 향상시킬 수 있다는 가능성을 확인했다는 점에서 의미가 있다고 할 수 있다.
    • 종합
    • 교육
    2025-06-12
  • 서울대 윤제용·류재윤 교수팀 그린수소 생산 관련 새로운 수전해 운전 전략 개발
    서울대학교 공과대학은 화학생물공학부 윤제용·류재윤 교수팀이 건국대학교 화공학부 이장용 교수팀과의 공동연구를 통해 복잡한 촉매 제조 공정 없이도 그린수소를 생산할 수 있는 새로운 수전해(水電解) 운전 전략을 개발했다고 밝혔다. 연구진은 고가의 귀금속 촉매를 사용하지 않고도 수소 생산의 효율을 획기적으로 높일 수 있다는 가능성을 제시했다. 따라서 이번 연구성과는 탄소중립 사회를 앞당길 기술적 전환점이 될 전망이다. 해당 연구결과는 세계적 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’에 ‘Dynamic polarization control of Ni electrodes for sustainable and scalable water electrolysis under alkaline conditions’ 제하의 논문으로 지난 23일 게재됐다. 물을 전기분해해 그린수소를 생산하는 수전해 기술은 탄소중립 달성을 위한 핵심 기술로, 대한민국 12대 국가전략기술 중 하나다. 수전해는 친환경 수소 생산의 핵심 기술로 주목받고 있으나 실제 시스템에서는 고활성을 유지하기 위해 정밀하게 합성된 촉매층을 전극 표면에 도포해야 하고, 이 촉매층은 시간이 지남에 따라 점차 성능이 저하되는 구조적 한계를 가진다. 이에 연구팀은 고급 촉매층을 만들 필요 없이 상용 니켈 (Ni) 전극만으로도 고효율·고내구성의 수소 생산을 가능케 하는 ‘전기화학적 활성화 운전법(EA 운전, Electrochemical activation)’을 독자적으로 개발했다. 연구팀은 촉매를 입히지 않은 상용 니켈 전극에 자체 개발한 EA 운전법을 적용해 수전해의 속도 결정 단계인 ‘산소 발생 반응(Oxygen Evolution Reaction)’에서 고성능을 보이는 니켈-철 수산화옥시화물(NiFeOOH) 촉매에 필적하는 수준의 수전해 효율을 달성했다. 핵심은 전극에 주기적으로 ‘쉬는 시간’을 주는 ‘동적 분극 제어(Dynamic Polarization Control)’ 방식이다. 이 방법은 니켈 전극에 짧은 시간 동안 약한 환원 전압을 가해 수산화칼륨 전해질에 녹아 있는 미량의 철(Fe)이 전극 표면에 다시 달라붙도록 유도한다. 이렇게 유도된 철은 니켈과 결합해 고활성 산소발생 촉매층을 전극 스스로 형성하게 하고, 반복적으로 자기 회복하는 ‘자가 치유(Self-healing)’ 전극이 된다. 이 운전법이 적용된 수전해 셀은 1A/cm²의 고전류 조건에서 1000시간 이상 안정적으로 구동됐다. 뿐만 아니라 면적 25cm² 규모의 3-스택 수전해 셀 시스템에서도 수백 시간 이상 작동하는 우수한 내구성을 입증했다. 이는 실험실 수준을 넘어 실제 사용 환경에 가까운 넓은 셀 구성과 장시간 운전 조건에서도 기술의 신뢰성을 확보했음을 의미한다. 이번 연구에서 개발한 EA 운전법은 고가의 귀금속 촉매를 대체하고, 수소 생산 공정을 단순화함으로써 그린수소 생산의 경제성을 크게 향상시킬 수 있는 가능성을 보여준다. 고가의 촉매 소재나 복잡한 공정 없이도 높은 효율과 안정성을 동시에 확보한 이 운전법은 실제 수소 생산 비용 절감에 기여할 수 있을 뿐 아니라 기술의 재현성과 확정성 또한 우수해 대형 시스템으로의 전환 및 상용화 가능성도 매우 높게 평가된다. 이에 따라 본 기술은 향후 기술이전 및 산업 현장 적용을 통해 국내 수소 생산 공정의 경쟁력을 실질적으로 강화할 수 있을 것으로 기대된다. 나아가 한국의 탄소중립 실현과 수소경제 전환을 뒷받침하는 핵심 기반 기술로 자리매김할 전망이다. 연구를 이끈 윤제용 교수는 “촉매에 의존하지 않는 수소 생산법은 궁극적으로 그린수소의 경제성과 확장성을 획기적으로 높일 수 있는 전략”이라며 “이번 성과는 탄소중립을 위한 수소경제 기술의 실질적 전환점이 될 것”이라고 강조했다. 연구를 공동으로 주도한 류재윤 교수는 “이번 연구는 단순한 운전 조건의 최적화가 아니라 전극/전해질 계면에서 일어나는 복잡한 전기화학적 상호작용을 체계적으로 규명하고, 이를 실제 시스템에 구현한 원천 응용 연구”라며 “기초 원리의 정교한 해석과 산업적 유효성을 동시에 입증한 사례”라고 평가했다. 본 연구의 제1저자인 서울대학교 화학생물공학부 한상휘 박사는 전기화학 기반의 에너지 전환 기술을 중심으로 글로벌 탄소중립 기술 개발에 이바지하고자 하는 연구 비전을 갖고 있다. 오는 9월부터는 미국 UC 버클리(University of California, Berkeley)에서 박사후연구원으로 근무하며, 세계적 연구 환경 속에서 한국의 선도적 기술 역량을 더욱 강화하는 연구 활동을 이어갈 예정이다. 아울러 한 박사는 장기적으로는 국내 교수직에 도전해 에너지·환경 분야의 학문 발전과 산업 혁신에 중추적인 역할을 맡을 계획이다. 한편 이번 연구는 과학기술정보통신부 ‘개인기초연구사업-중견연구(창의연구형)’, ‘나노 및 소재기술 개발사업’, ‘우수신진연구’, ‘탑-티어 연구기관 간 협력 플랫폼 구축 및 공동연구 지원사업’, 기초과학연구원 나노입자 연구단 기본사업의 지원을 받아 수행됐다.
    • 종합
    • 교육
    2025-05-29
  • 중소기업과 서울대 기술교류회 열려, 산학연계 통한 상생 발전 도모
    서울대학교 공과대학(이하 서울공대)은 최근 경기도 시흥캠퍼스 교육협력동에서 ‘제1회 중소기업-서울대(SME-SNU) 기술교류회’를 성공적으로 개최했다고 밝혔다. 서울대 정밀기계설계공동연구소와 시흥시기업인협회가 주최한 이번 행사는 중소기업과 서울대 간 기술 협력을 촉진하고, 산학연계를 통한 상생 발전을 도모하기 위해 마련됐다. 이번 교류회에는 서울공대 교수진, 연구진과 시흥시 소재 중소기업의 대표 및 임직원 등 120여 명이 참석해 열띤 관심을 보였다. ‘AI 혁신과 기업가 정신’을 주제로 한 서울대 기계공학부 박희재 교수의 기조연설에 이어 △히트펌프 연구동향 및 최신 기술개발 사례(기계공학부 김민수 교수) △전산열역학을 통한 신소재 개발 및 공정문제 해결(재료공학부 정인호 교수) △최신 적정 제조기술 - AI·로보틱스(기계공학부 안성훈 교수) △적층제조 기술을 통한 제조업 문제 해결(EML 김충수 상무) △서울대 SNU 공학컨설팅센터소개 - 산학협력체계 및 우수산학협력 사례(공학컨설팅센터 김경수 산학협력중점교수) △특허 기반 연구개발 사례(정밀기계설계공동연구소 김영태 연구원) △소음진동의 문제해결 사례(기계공학부 강연준 교수 연구실 남정민 박사과정생) 총 7개 주제의 세션이 이어졌다. 세션 참석자들은 서울대의 최신 연구 성과와 기술을 공유하고, 중소기업의 현장 애로기술에 대해 자유롭게 의견을 나눴다. 특히 기술 매칭, 공동 연구, 인재 교류 분야에서의 실질적 협력 방안을 논의했으며, 행사 후 네트워킹 시간을 통해 향후 지속 가능한 교류를 위한 기반을 마련했다. 안성훈 서울대 정밀기계설계공동연구소 소장은 “최근 급속히 위축 중인 국내 제조업은 늦기 전에 AI 전환과 자율화, 로봇화의 큰 물결에 올라타고, 혁신적인 아이디어를 사업화시켜 세계 최초이자 최고의 제품 및 서비스를 선보여야 한다”고 강조하며 “이처럼 중요한 시기에 대학과 기업이 서로 협력해 함께 발전하는 혁신 생태계를 만들어보고자 이번 기술교류회를 기획했다”고 밝혔다. 이명열 시흥시기업인협회 회장은 “날로 치열해지는 글로벌 제조 환경에서 기업의 AI 활용이 매우 중요해졌으며, 특히 모든 도메인 영역에서 AI를 이용할 수 있는 혁신성장이 필요한 상황”이라며 “이번 행사가 많은 중소기업 관계자들에게 다양한 분야에서 AI를 활용해 혁신성장을 추구할 수 있는 기회가 되길 바란다”고 말했다. 서울대 정밀기계설계공동연구소와 시흥시기업인협회는 앞으로도 정기적인 기술교류회를 통해 산업계와 학계가 함께 성장하는 협력 모델을 구축해나갈 계획이다.
    • 종합
    • 교육
    2025-05-19
  • 서울대 유효빈 교수팀, 무아레 격자 중첩 통한 2차원 양자물질 플랫폼 구현
    서울대학교 공과대학은 재료공학부 유효빈 교수 연구팀이 고등과학원 손영우 교수, 이화여자대학교 박창원 교수 연구팀과의 공동연구를 통해, 무아레 격자 중첩을 통한 2차원 양자물질 플랫폼을 구현했다고 밝혔다. 이번 연구 결과는 지난 14일 ‘네이처(Nature)’지에 ‘Unconventional domain tessellations in moiré-of-moiré lattices’ 제하의 논문으로 온라인 게재됐다. 이 연구는 한국연구재단의 우수신진연구 및 선도연구센터 사업, 포스코청암재단의 포스코사이언스 신진교수 펠로십, 고등과학원 등의 지원으로 수행된 것이다. 그래핀 삼중층 구조에서 서로 다른 무아레 격자들이 중첩될 때 형성되는 위계적 구조와 복합 상호작용을 원자 수준에서 규명한 최초의 사례로, 향후 프로그래머블 양자소자 및 차세대 전자 재료 개발을 위한 새로운 고체 플랫폼의 가능성을 제시했다는 평가를 받고 있다. ‘무아레(moiré) 현상’은 두 개의 규칙적인 무늬가 겹칠 때 생기는 새로운 중첩 무늬를 의미한다. 예를 들어 두 겹의 망사천을 겹치면 원래 없던 물결 무늬가 나타나고, TV 화면 속 줄무늬 셔츠에서 새로운 격자 무늬가 보이기도 한다. 최근 과학계는 이 같은 단순한 시각적 효과 외에도, 무아레 현상이 전자의 움직임과 성질을 근본적으로 바꿀 수 있다는 점에 주목하고 있다. 전자기기나 양자소자의 작동 원리에서 핵심이 되는 전자의 움직임과 상태는, 이를 구성하는 물질 내부의 원자들이 어떤 규칙에 따라 얼마만큼의 간격으로 배열돼 있는지와 밀접히 관련돼 있다. 일반적인 고체 물질에서는 이 원자 간 배열이 고정돼 있어, 전자의 성질을 인위적으로 바꾸기 어렵다. 이에 반해 그래핀(graphene)처럼 원자 한 층으로 이뤄진 매우 얇은 2차원 물질을 두 장 겹친 후 약간 비틀면, 각 층의 원자 배열 간 간섭으로 새로운 격자 구조인 ‘무아레 격자(moiré lattice)’가 형성돼 기존 물질로는 구현할 수 없는 새로운 격자 주기를 인위적으로 설계하는 것도 가능하다. 이를 통해 전자의 흐름과 성질을 정밀하게 조절할 수 있어, 양자기술 및 차세대 전자소자 개발을 위한 새로운 재료 플랫폼으로 각광받고 있다. 기존 무아레 구조 연구는 두 층을 겹친 ‘단일 무아레 구조’에 집중한 사례가 대부분이었다. 하지만 세 층 이상을 쌓아 겹치는 경우, 각 층 사이에서 형성된 서로 다른 무아레 격자들이 중첩되며 완전히 새로운 위계적 구조, 즉 ‘이중 무아레 구조(moiré-of-moiré lattice)’가 만들어질 수 있다. 두 개의 무아레 격자 주기를 각각 독립적으로 제어할 수 있는 이 구조는 전자 상태 조절의 자유도를 기존보다 한층 높일 수 있다는 점에서 중요한 의미를 지닌다. ‘이중 무아레 구조’에서는 여러 층의 상호작용으로 인해 원자 배열의 미세한 변화나 그에 따른 복잡한 물리 현상이 일어날 수 있지만, 그 기전에 관한 연구는 아직 충분히 이뤄지지 않았다. 따라서 향후 보다 복잡하고 정밀한 전자 구조를 구현하기 위해 이중 무아레 구조의 위계적 구조 형성과 각 층간 복합적인 상호작용의 원리를 규명하는 연구가 반드시 필요한 상황이었다. 이에 공동연구팀은 그래핀 세 층을 겹치고 각 층의 비틀림 각도를 정밀하게 조절함으로써, 두 개의 무아레 격자가 서로 중첩되는 ‘이중 무아레 구조’를 구현했다. 연구진은 이 구조에서 원자들이 스스로 안정된 배열을 찾아가며 형성하는 새로운 격자 패턴을 고성능 투과전자현미경을 통해 직접 관찰했고, 지금까지 보고된 적 없는 삼각형, 카고메(Kagome)*, 육각별 등 새로운 격자 패턴이 자발적으로 형성되는 것을 발견했다. 이 구조는 원자들이 스스로 가장 안정한 배열을 찾아가며 정렬된 결과로, 단순히 바로 인접한 두 층 사이의 상호작용만으로는 설명할 수 없었다. 연구팀은 한 층을 건너뛴 비인접한 층들 사이에서도 비교적 약한 상호작용이 발생하며, 이것이 전체 구조 형성에 매우 중요한 역할을 한다는 사실을 밝혀냈다. 이처럼 복잡하게 얽힌 층간 상호작용의 결과, 단순한 기존 무아레 구조와 전혀 다른 위계적인 격자 구조와 독특한 물리적 특성이 나타남을 알 수 있는데, 이는 삼중층 이상의 구조에서만 구현 가능한 독특한 현상이다. 따라서 연구팀은 이 구조가 형성되는 과정을 실험 결과와 시뮬레이션을 결합해 정밀하게 분석했고, 비틀림 각도에 따라 어떤 격자 패턴이 나타나는지를 정리한 ‘도메인 격자 상태도’를 완성해 보고했다. 이 상태도는 앞으로 다중 무아레 구조를 활용해 물질의 전자적 성질을 설계하는 데 유용한 지침이 될 것으로 예상된다. 이번 연구는 기존 단일 무아레 구조의 한계를 뛰어넘어, 서로 다른 무아레 격자가 겹쳐진 복합 구조에서도 원자 배열과 전자 상태를 정밀하게 설계할 수 있다는 가능성을 보여준 중요한 성과로 평가받는다. 특히 두 개의 무아레 격자 주기를 각각 독립적으로 조절할 수 있어, 전자의 성질을 변화시키기 위한 설계의 자유도가 크게 확장된 점이 핵심 성과이다. 특히 연구진은 원자 한 층 두께의 얇은 2차원 물질을 겹침으로써, 기존에 보고된 적 없는 새로운 양자역학적 현상을 실험적으로 구현했고, 이를 설명할 새로운 물리·재료 과학적 방법론을 제시한 의미 있는 성과를 거뒀다. 따라서 향후 이에 기반해 2차원 소재의 양자물질 플랫폼을 구현할 때 더욱 정교한 설계 및 조절이 가능할 것으로 기대된다. 아울러 새로운 개념의 전자소자나 연산장치를 개발하는 응용 연구의 토대도 마련할 것으로 예상된다. 연구를 책임진 유효빈 교수는 “이번 연구는 무아레 구조가 단순한 시각 효과나 기하학적 배열을 넘어, 원자 간의 상호작용과 전자 상태까지도 정밀하게 설계할 수 있는 새로운 도구가 될 수 있음을 실험적으로 입증했다는 점에서 그 의미가 깊다”며 “특히 이중 무아레 구조에서 나타나는 위계적 격자 형성과 장거리 상호작용은 기존 재료 설계 방식과는 전혀 다른 접근법을 가능케 한다”고 설명했다. 또한 “연구 결과는 향후 전기장과 같은 외부 자극에 따라 이러한 격자 구조와 전자 상태를 능동적으로 조절할 수 있는 ‘프로그래머블 재료’ 개발로도 이어질 수 있을 것”이라며 이번 연구결과가 차세대 전자기기와 양자기술 분야에 큰 파급력을 미칠 것으로 예측했다. 한편 논문의 공동 주저자인 박대성 연구원은 석사과정 이수 중 투과전자현미경(TEM)을 활용해 ‘뒤틀린 반데르발스 물질(twisted vdW materials)’에서 형성되는 모아레 격자 구조를 연구했으며, 현재 삼성전자에서 PA (Process Architecture) 직무를 맡아 반도체 제조 공정을 설계·개발하고 있다. 특히 공정 단계 혁신을 통한 반도체 성능 향상과 경제성 확보에 매진 중이다.
    • 종합
    • 교육
    2025-05-15

실시간 교육 기사

  • 건국대 정지혜 교수 및 학호용 교수팀, LHb 관련 우울증세 완화할 수 있는 메커니즘 규명
    건국대학교 정지혜 교수(생명과학특성학과)와 KU신경과학연구소 박호용 교수 연구팀이 측유상핵(외측고삐핵, Lateral Habenula, LHb)의 신경 활성을 조절해 우울증 증세를 완화할 수 있는 새로운 메커니즘을 규명했다고 밝혔다. 측유상핵은 뇌 내 시상상부의 작은 부위로, 감정 조절과 스트레스 반응에 중요한 역할을 한다. 정지혜 교수는 그동안 측유상핵의 전시냅스 과활성이 우울증 발병의 중요한 원인 중 하나일 수 있다고 제시해 왔다. 이번 연구에서는 측유상핵의 신경 활성이 일주기적 리듬을 따라 변동함을 확인했으며, 스트레스를 받으면 이 리듬이 사라지고 과도하게 강화된다는 사실을 밝혀냈다. 연구팀은 약리학적 전기생리학 분석을 통해 스트레스가 측유상핵의 MAPK/ERK 신호전달체계의 과활성화로 이어져 측유상핵 시냅스의 비정상적인 활성을 유발한다는 사실을 확인했다. MAPK/ERK 신호전달체계는 세포 내에서 신호를 전달하는 중요한 경로로, 세포 성장, 분화, 생존 및 스트레스 반응에 관여한다. 연구팀은 특히 스트레스에 의해 증가한 MAPK와 MAPKK (인산화 효소)의 활성을 억제하면 측유상핵의 일주기적 활성을 회복시킬 수 있을 뿐만 아니라 우울 행동까지 완화할 수 있다는 중요한 결과를 도출했다. 이번 연구는 건국대 생명과학특성학과 정지혜 교수가 교신저자, 건국대 KU신경과학연구소 박호용 교수가 주저자로 참여해 진행됐으며 한국연구재단 중견연구자지원사업과 세종펠로우십의 지원을 받아 수행했다.
    • 종합
    • 교육
    2024-11-28
  • 사이버한국외대 “사이버대 최초 일반대학원 신규 설치 인가” 글로벌한국어학과와 AI & English학과 운영
    사이버한국외국어대학교(총장 장지호)는 “교육부로부터 사이버대학 최초로 일반대학원 신규 설치 인가를 통보받아 2025학년도 1학기에 석사과정 일반대학원을 개원한다”고 밝혔다. 사이버한국외대 일반대학원은 글로벌한국어학과와 AI & English학과 두 개의 전공으로 운영된다. 글로벌한국어학과는 한국어와 한국문화에 대한 세계인의 관심과 선호가 확대되고 국내외 한국어 학습자도 그에 비례해 증가하는 추세에 맞춰 글로벌 환경 속에서 더욱 유연하게 활동할 글로벌 한국언어문화 전문가를 양성한다. AI & English학과는 딥러닝 플랫폼, 챗봇, 텍스트 분석과 자연어 처리 등 AI의 사용이 보편화된 상황에서 한 걸음 더 나아갈 능력을 갖춘 언어데이터 분석 및 AI 활용 영어 콘텐츠 개발 전문인력을 양성하게 된다. 사이버한국외대 장지호 총장은 “올해로 개교 20주년을 맞은 우리 대학이 사이버대학 최초로 일반대학원 신규 설치 인가를 받았다는 것은 매우 고무적인 일”이라며 “더욱 질 높은 교육콘텐츠와 첨단 교육환경을 제공함으로써 미래를 선도하는 글로벌 전문가의 육성이라는 소명에 충실히 임하겠다”고 말했다. 한편 사이버한국외국어대학교는 서울시 동대문구 이문동 한국외국어대학교 안에 자리한 4년제 원격대학이다. 사이버한국외대는 국내 유일 외국어 특성화 사이버대학교로, 세계 3위 언어 교육 기관인 한국외대의 외국어 교육 노하우를 바탕으로 △체계적인 교육 과정 △최첨단 온라인 교육 환경 △학생 중심의 교육 서비스를 제공한다. 사이버한국외대 대학 과정에는 영어학부, 중국어학부, 일본어학부, 한국어학부, 스페인어학부, 베트남·인도네시아학부, 마케팅·경영학부, 지방 행정·의회 학부, 산업안전·주택관리학부, 다문화·심리상담학부, K뷰티학부 등 11개 학부와 아테나 교양학부가 있다. 대학원 과정에는 TESOL대학원과 2025년 개원하는 일반대학원이 있다.
    • 종합
    • 교육
    2024-11-19
  • 서울대 정인호 교수 미국 금속·재료학회가 주관하는 상의 수상자로 선정
    서울대학교 공과대학은 재료공학부 정인호 교수가 미국 금속·재료학회(TMS)가 주관하는 ‘Sadoway Materials Innovation and Advocacy Award’의 2025년 수상자로 선정됐다고 밝혔다. 지속가능한 재료 공정에 기여한 미국 매사추세츠 공대(MIT) 재료화학공학과 교수 도널드 새도웨이(Donald R. Sadoway) 교수의 공로를 기리는 ‘Sadoway Materials Innovation and Advocacy Award’는 연구, 교육, 정책적 노력 등을 통해 재료과학 및 공학 분야, 특히 지속가능성(sustainability) 분야에서 혁신적 업적을 거둔 중견 연구자에게 수여하는 상이다. 정인호 교수는 재료 열역학 데이터베이스 개발과 교육을 통해 혁신적 재료개발 및 지속가능한 공정 개발에 기여한 공헌을 인정받아 본 상을 수상했다. 그간 정 교수는 금속 및 세라믹 재료의 열역학 데이터베이스 개발 및 이를 이용한 재료설계 및 공정 최적화, 철강제조 공정 설계 및 탄소중립 관련 공정 기술 개발 등을 주제로 연구를 수행해 온 바 있다. 시상식은 내년 3월 미국 라스베이거스에서 열리는 제154회 TMS 학술대회(TMS 2025 Annual Meeting)에서 개최될 예정이다. 정 교수는 “지난 20여 년 동안 재료 분야의 열역학 데이터베이스 개발에 매진하고, 이를 전 세계 재료분야 연구자들이 활용할 수 있게 교육 및 전파해 온 노력을 인정받은 데 대해 깊은 감사의 말씀을 드린다”며 “학계와 산업계에서 열역학 계산을 활용해 혁신적이고 지속가능한 재료 및 공정설계를 수행할 수 있도록 관련 연구 및 교육을 계속해 나갈 계획”이라고 밝혔다. 2007년부터 2017년까지 캐나다 맥길대학교(McGill University) 광업 및 재료공학과에서 조교수와 부교수를 지낸 정 교수는 현재 서울대학교 재료공학부 교수로 재직 중이다. 또한 2009년부터 전 세계 14개 철강 관련 기업이 공동 지원하는 철강 컨소시엄(Steelmaking Consortium)의 과제 책임자를 맡아오고 있다.
    • 종합
    • 교육
    2024-11-14
  • 세계 최상위 연구자에 포함된 한국의 연구자 수 작년 대비 12% 증가
    엘스비어는 세계 최상위 연구자에 포함된 한국의 연구자 수가 2023년 대비 12% 증가해 2024년 2364명으로, 2년 연속 두 자릿수 성장을 지속하고 있다고 밝혔다. 세계 최상위 2% 연구자 리스트는 색인/인용데이터베이스인 Scopus 기반 22개의 주요 주제, 174개의 세부 주제분야 별로 최소 5편 이상의 논문을 발표한 전 세계 연구자 중 백분위 2% 이상인 상위 10만 명의 연구자를 대상으로 1960년부터 2023년까지의 논문 피인용도에 따른 영향력을 분석(2024년 8월 1일 기준)해 최종 선정했다. 전세계 연구자 수는 작년 961만 명에서 1025만 명으로 7%, 리스트에 포함된 최상위 2% 연구자는 20만4643명에서 21만7097명으로 6% 증가했다. 한국의 최상위 2% 연구자는 2023년 2120명에서 2364명으로 244명이 늘어 12% 증가, 연구자 수 기준으로 전세계 15위에 올랐다. 미국이 8만4204명으로 가장 많고, 다음으로 영국(1만9648명), 독일(1만1527명) 순으로 나타나며, 중국은 1만 명이 넘어서며 4위에 자리했다. 2364명의 한국 연구자들은 18개 주제분야에 분포돼 있으며, 모든 분야에서 연구자 수가 증가했다. 가장 많은 연구자가 인에이블링 및 전략 기술(555명)에 포함됐으며, 다음으로 임상 의학(440명), 공학(341명), 화학(285명), 물리학 및 천문학(234명)이 뒤를 이었다. 연구자 수 증가가 가장 많았던 주제는 임상 의학으로 71명이 증가했다. 세계 최상위 2% 연구자가 가장 많이 포함된 기관은 서울대학교(323명)로 확인되며, 다음으로 KAIST(162명), 연세대학교(156명), 성균관대학교(145명), 고려대학교(117명) 순으로 나타났고, 상위 20개 대학 중 18대학의 연구자 수가 증가했다. 5위까지 순위는 작년과 동일하며, 23명이 증가한 울산대학교가 11위, 이화여자대학교(38명)가 2022년에 이어 상위 20개 대학에 다시 포함됐다. 이들 상위 20개 대학에 소속된 세계 최상위 2% 연구자 수는 총 1642명으로, 전체 2364명의 약 70%를 차지했다. 엘스비어 장현주 이사는 “한국의 상위 2% 연구자 수가 2년 연속 두 자릿수 성장을 하고 있다는 것은 한국 연구자의 연구 경쟁력이 강화되고 있다는 증거”라고 말하며 “연구자의 논문 인용 영향력을 높이기 위해 출판 전에는 국제, 산학, 다학제 협력을 전략적으로 검토하고, 출판 후에는 가시성을 높이기 위해 홍보하며, 인용 현황을 확인 및 관리하는 것이 필요하다”고 강조했다. 한편 엘스비어(Elsevier)는 과학 기술, 의학 분야 출판사이자 데이터 분석 기업이다. 9500여 명의 직원들이 170개 이상의 국가와 지역에서 전세계 연구자들에게 최상의 연구 솔루션을 제공하고 있다.
    • 종합
    • 교육
    2024-11-13
  • 서울대 김성우 교수 IFEES 집행위원 선출 “인재 양성 국제협력 체계 구축할 것”
    서울대학교 공과대학은 공학전문대학원 김성우 교수가 2024년 ‘세계공학교육단체협의회’(International Federation of Engineering Education Societies, IFEES)의 2024년도 집행위원으로 선출됐다고 밝혔다. IFEES는 전 세계 공학교육 조직 관련 국제 단체다. 세계공과대학장협의회(GEDC), 미국공학교육협회(ASEE) 등 다양한 공학교육 조직들이 IFEES에 참여 중이다. 올해 선거에서는 한국공학교육학회(KSEE)를 대표하는 김성우 교수 외에도 전기전자공학자협회(IEEE), 미국공학인증제(ABET), 국제시스템엔지니어링협회(INCOSE), 호주공학교육협회(AAEE), 세계공학교육학생협의체(SPEED)를 각각 대표하는 후보 5명이 함께 집행위원으로 선출됐다. 김성우 교수의 IFEES 집행위원 선출은 한국의 우수한 공학교육이 전 세계에 걸쳐 국제적 영향력을 확대할 수 있는 중대한 전기를 마련했다는 점에서 괄목할 만한 성과로 평가받는다. 향후 김 교수는 IFEES의 글로벌 공학교육 정책 수립과 주요 의사결정에 참여하는 동시에 국제 협력을 통해 공학교육 발전을 주도하게 된다. 김 교수는 “수많은 공학 및 공학교육 조직을 대표하는 IFEES의 집행위원으로서 한국과 세계 공학교육 발전에 기여해야 할 책무를 맡게 돼 큰 책임감을 느낀다”고 선출 소감을 밝히며 “탄소중립, 고령화, 양극화, 디커플링, 과학기술윤리 문제처럼 국제적 핵심 도전 과제들을 해결할 공학 인재를 양성하는 국제협력 체계를 구축하겠다. 아울러 내년에 한국에서 열리는 ‘세계공학교육포럼 및 공과대학장 세계대회(WEEF&GEDC 2025)’를 성공적으로 개최하기 위한 국제 외교를 담당할 예정”이라고 밝혔다.
    • 종합
    • 교육
    2024-11-01
  • 건국대 강학수 교수팀 답토마이신 항생제 고효율로 생산할 수 있는 미생물 균주 확보
    건국대학교 KU융합과학기술원 강학수 교수(의생명공학과) 연구팀이 합성생물학 기술을 활용해 답토마이신 항생제를 고순도, 고효율로 생산할 수 있는 미생물 균주를 개발했다. 이 연구 결과는 한국연구재단의 중견연구자지원사업, 기초연구실지원사업, 레트로생합성 원천기술개발사업의 지원을 받아 수행된 것으로 세계적 화학 저널인 ‘Journal of the American Chemical Society’ (JACS, IF=14.5)에 지난 28일 게재됐다. 답토마이신은 리포펩타이드 계열의 항생제로, 다제내성 슈퍼박테리아 감염증 치료에 중요한 역할을 하는 의약품이다. 그러나 기존의 산업 생산 방식에서는 불필요한 유도체가 생성되고, 지방산인 데카노익산을 추가로 공급해야 하는 등 비효율적인 과정이 존재했다. 이에 따라 고효율의 대량 생산 균주 개발이 필요하다는 요구가 증가해 왔다. 강 교수팀은 이번 연구를 통해 답토마이신 생산균주인 스트렙토마이세스 로제오스포로스의 유전체를 엔지니어링하고, 지방산 대사 경로를 리프로그래밍해 고순도 및 고효율의 생산 균주를 확보했다. 이 균주는 기존 야생형 균주에 비해 약 2200% 향상된 생산 수율을 자랑하며, 배양 과정에서 데카노익산의 공급이 필요 없어 경제적이고 친환경적인 생산 공정을 가능하게 할 것으로 기대된다. 이는 합성생물학 플랫폼을 통해 미생물 유래 의약품 생산의 가능성을 극대화한 사례로, 향후 원료 의약품 산업에서의 응용 가능성을 보여준다.
    • 종합
    • 교육
    2024-10-31
  • 서울대 유경민 학생의 투명 전극 연구, ACerS 주관 알프레드 쿠퍼 장학상 수상
    서울대학교 공과대학은 재료공학부 유경민 학생(22학번, 20)이 투명 전극 연구의 학문적 우수성을 인정받아 세라믹 분야에서 권위 있는 학회인 미국 세라믹학회(American Ceramic Society, ACerS)가 주관하는 학부생 논문 공모전에서 ‘알프레드 쿠퍼 장학상(Alfred R. Cooper Scholars Award)’을 수상했다고 밝혔다. 알프레드 쿠퍼 장학상은 유리 및 광학 소재 분야에서 연구 성과가 탁월한 학부생을 격려하기 위해 제정된 상이다. 수상자에게는 500달러의 상금과 상패가 수여되며, 매년 미국에서 개최되는 재료공학 분야 컨퍼런스인 ‘미국재료학회(Materials Science & Technology, MS&T)’에서 자신의 연구 성과를 구두 발표할 기회를 얻는다. 이번 수상을 통해 우수 논문으로 선정된 유경민 학생의 연구 논문은 재료공학 분야의 SCIE급 상위 10%에 해당하는 국제 학술지 ‘저널 오브 올로이스 앤 컴파운즈(Journal of Alloys and Compounds)’에 게재됐다. 재료공학부 정인호 교수 연구실에서 인턴십 과정을 밟은 유경민 학생은 최운오 박사과정생과 함께 투명 전극 연구를 진행한 바 있다. 투명 전극이란 투명하면서도 전류가 잘 흐르는 재료를 말하며, 이러한 특성 때문에 태양 전지, 터치스크린 등에 사용된다. 유경민 학생은 투명 전극에 주로 사용되는 산화 인듐(indium oxide, In2O3)에 산화 주석(tin oxide, SnO2)과 산화 아연(zinc oxide, ZnO)이 추가된 물질이 1400℃ 이상의 고온에서 어떤 거동을 보이는지 연구했다. 그 결과, 지금까지 보고된 적 없는 인듐(In), 주석(Sn), 아연(Zn)의 혼합 산화물(In2Sn2Zn2O9)을 발견하는 성과를 거뒀을 뿐 아니라 해당 물질의 정확한 조성, 결정 구조, 생성 온도를 분석하는 연구도 수행했다. 학부생 신분임에도 주도적으로 연구를 진행해 우수한 성과를 거둔 유경민 학생은 “연구를 지도해주신 정인호 교수님, 함께 논문 작업에 참여하신 최운오 선배님에게 감사드린다”고 인사를 전하며 “다른 학부생들도 인턴십에 참여해 연구의 전 과정을 직접 체험해보면 진로 선택과 연구 역량 함양에 있어서 큰 도움이 될 것”이라고 밝혔다.
    • 종합
    • 교육
    2024-10-29
  • 서울대 장호원 교수팀 초저전력 인공지능 연산 뉴로모픽 하드웨어 개발
    서울대학교 공과대학은 재료공학부 장호원 교수팀이 초저전력으로 인공지능 연산을 수행할 수 있는 뉴로모픽(Neuromorphic) 하드웨어를 개발했다고 밝혔다. 이번 연구 결과는 기존의 지능형 반도체 소재 및 소자가 지닌 근원적 문제의 해결책을 제시하고 어레이 수준의 기술화 가능성을 시사한 점을 국제적으로 인정받아 지난 18일 다학제 분야 최고 수준 저널인 ‘네이처 나노테크놀로지(Nature Nanotechnology)’(IF: 38.1)에 발표됐다. 현재 사물 인터넷, 사용자 데이터 분석, 생성형 AI, 거대언어모델(LLM), 자율 주행 등 다양한 분야에서 빅데이터 처리를 위해 막대한 전력이 병렬연산 기반의 컴퓨팅에 소요된다. 그런데 병렬연산에 쓰이는 기존 CMOS 실리콘 반도체 기반 컴퓨팅은 에너지 소모, 메모리 및 프로세서의 속도 저감, 고집적 공정의 물리적 한계 등의 문제점을 안고 있다. 이로 인해 인공지능이 우리의 삶을 윤택하게 해주는 한편으로는 에너지 및 탄소 배출 문제를 낳고 있는 상황이다. 이 난제를 해결하려면 기존의 디지털 기반 폰노이만 구조(Von Neumann architecture) 컴퓨팅의 한계를 극복할 필요가 있다. 따라서 인간 뇌의 작동 원리를 모사한 차세대 지능형 반도체 기반 뉴로모픽 하드웨어의 개발이 시급한 과제로 부상 중이다. 인간의 뇌는 대략 1000억 개의 뉴런과 이들이 서로 연결된 1000조 개의 시냅스로 구성돼 있는데, 시냅스는 전기적 신호를 통해 이온 이동을 유도해 상호 연관 정보를 시냅스 가중치로 저장함으로써 기억, 연산, 추론 등을 수행하는 지성 활동의 기본 단위다. 이러한 두뇌의 시냅스 작동 방식을 모사한 지능형 반도체 기반 뉴로모픽 하드웨어는 입력 신호의 이력에 따라 아날로그 다중저항 상태를 저장해 그 가중치를 연산에 활용하는 비휘발성 멤리스터(Memristor) 소자에 기반을 두고 있다. 이 멤리스터 소자에 적용 가능한 소재로 많이 연구된 비정질 금속 산화물은 전도성 필라멘트를 기반으로 구동돼 특정 부분에서만 전하가 축적되기 때문에 시냅스 가중치 조절이 비대칭, 비선형적으로 이뤄질 수밖에 없다. 따라서 병렬 연산의 부정확성이 크고 에너지 효율성이 낮다는 치명적 한계가 있었다. 이에 문제의식을 발전시킨 김승주 박사와 장호원 교수는 최근 차세대 태양전지 및 LED 소재로 주목받던 할라이드 페로브스카이트 소재가 높은 이온 이동도를 가진다는 특성에 착안해, 유·무기 하이브리드 소재 설계를 기반으로 뉴로모픽 소자를 개발하는 연구에 집중했다. 그 결과 연구팀은 첨단 공정으로 설계된 새로운 이차원 페로브스카이트 소재에서 이온이 반도체 표면 전면에 균일하게 분포할 수 있다는 사실을 발견할 수 있었다. 이를 통해 기존 지능형 반도체에서는 실현 불가능했던 초선형적이고 대칭적인 시냅스 가중치 조절을 성공적으로 구현했다. 이 기전은 연구에 함께한 포항공과대학교 연구팀이 제일원리 계산을 통해 이론적으로 증명했다. 그리고 개발된 소자의 성능을 활용해 하드웨어에서 인공지능 연산의 높은 정확도를 평가한 결과, MNIST와 CIFAR와 같은 작은 데이터뿐만 아니라 고해상도 이미지인 이미지넷(ImageNET) 데이터에서도 이론적 한계값과 0.08% 이내의 매우 적은 오차로 추론이 가능함을 확인했다. 더 나아가 단일 소자뿐만 아니라 어레이 수준에서도 초저전력으로 인공지능 연산을 가속할 수 있다는 사실을 미국 서던캘리포니아대학교(USC, University of Southern California)와의 공동 연구를 통해 입증했다. 지능형 반도체 소재 및 소자의 에너지 효율성을 크게 향상시킨 이번 연구는 앞으로 인공지능 연산의 전반적인 에너지 소모를 줄이는데 크게 기여할 수 있다. 또한 초선형적이고 대칭적인 시냅스 가중치 조절을 통해 인공지능 연산의 정확도를 획기적으로 높이는 동시에 자율주행, 의료 진단 등 다양한 분야에서 응용이 가능할 것으로 기대된다. 더불어 향후 차세대 인공지능 하드웨어 기술의 발전은 물론이고 관련 반도체 산업의 혁신도 촉진할 것으로 전망된다. 이번 연구에서 개발한 기술은 3년 전 김승주 박사와 장호원 교수가 재료 분야 최고 수준 저널인 ‘머티리얼즈 투데이(Materials Today)’(IF: 21.1)에 실린 주목할 만한 논문(Highlighted Paper)에서 발표한 기술을 한층 더 업그레이드한 기술로, 현재 국내 및 미국 특허 등록을 위한 심사가 진행 중이다. 연구를 지도한 장호원 교수는 “이번 연구는 차세대 지능형 반도체 소자의 근원적 문제를 해결할 수 있는 중요한 기초 자료를 제공하는 성과를 거뒀다”며 “특히 고성능의 뉴로모픽 하드웨어를 개발하기 위해서는 인공 시냅스 소재 내에 국소화된 필라멘트를 만드는 것보다 소재 전면에 균일한 이온 이동을 유도하는 것이 중요하다는 사실을 제시했다는 점에서 매우 의미가 깊다”고 밝혔다. 논문의 제1 저자로서 본 연구를 주도한 김승주 박사는 서울대학교 재료공학부에서 학사, 석사, 박사를 졸업한 후 서던캘리포니아대학교(USC, University of Southern California) 전기컴퓨터공학부에서 박사후연구원으로 재직 중이다. 박사과정 중 개발한 소재 기술을 어레이 수준으로 확장시키기 위해 해당 분야 최고 수준의 연구실이 있는 서던캘리포니아대의 방문연구원으로 파견을 가서 국제적 공동 연구를 수행한 후 박사후연구원까지 연계하며 연구의 완성도를 높였다. 현재 미 공군연구소 및 미국 반도체 회사들과의 협업 하에 우주, 항공 분야에서 활용할 수 있는 극한조건 지능형 반도체 개발 연구를 담당하고 있다.
    • 종합
    • 교육
    2024-10-21
  • 서울대 김용환 교수 미국 조선학회 학술 공로상인 ‘케니스 데이빗슨 메달’ 수상자 선정
    서울대학교 공과대학은 조선해양공학과 김용환 교수가 미국 조선학회(SNAME)가 주관하는 선박 연구 분야의 학술공로상인 ‘케니스 데이빗슨 메달(Kenneth Davidson Medal)’의 2024년 수상자로 선정됐다고 밝혔다. 이동체 역학 연구의 선구자였던 고(故) 데이빗슨 교수의 이름을 딴 데이빗슨 메달은 1959년부터 선박 연구 분야의 탁월한 성취를 이룬 학자에게 수여해오고 있는 미국 조선학회의 주요 학술공로상이다. 미국 조선학회는 해군, 해운과 해양산업을 비롯한 6개 분야에서 매년 또는 격년 단위로 메달 수상자를 선정하는데, 이 중 데이빗슨 메달은 2년마다 선박 연구 분야에서 세계적 수준의 기여도를 인정받은 학자 한 명에게만 수여한다. 이 메달은 선박 연구의 모든 분야를 대상으로 할 뿐만 아니라, 미국 조선학회의 비회원도 수상 후보가 될 수 있다. 따라서 수상자는 전 세계의 선박 공학자 중 가장 돋보이는 업적을 남긴 학자들 중에서 선정한다. 김용환 교수가 수상자로 선정된 올해 데이빗슨 메달 시상식은 지난 15일 미국 버지니아주 노퍽에서 열렸다. 특히 김 교수가 한국인 최초의 데이빗슨 메달 수상자이자 비서구권 국가가 배출한 첫 데이빗슨 메달 수상자라는 점에서 이번 선정은 학계의 관심을 모으고 있다. 지난 70여 년 동안 수상자들은 모두 미국과 유럽 국가 출신의 공학자들이었으며, 일부 아시아계 미국 학자들이 수상한적은 있지만 이들도 모두 미국에서 연구 활동을 펼쳤기 때문이다. 따라서 이례적인 올해 수상 결과는 김 교수의 탁월한 학문적 업적과 기여도를 입증한다는 분석이다. 서울대 공대는 국내 조선업체들이 세계 최상위를 점하고 있는 산업계와는 달리 학계에서는 한국이 그에 걸맞은 위상을 확보하지 못하고 있다는 것이 그간의 일반적 평가라며, 이러한 가운데 김 교수의 이번 수상은 한국 조선공학 학계의 위상을 한 단계 더 도약시켰다는 점에서 더욱 뜻깊은 쾌거라고 밝혔다. 김 교수는 서울대 조선공학과를 거쳐 매사추세츠 공대(MIT)에서 박사학위를 수여받았으며, 2004년부터 서울대에서 선박해양 유체역학 분야의 세계적 연구들을 선도해오며 국제적 명성을 쌓아왔다. 지난해에는 독일의 바인브룸(Weinblum) 재단의 2023~2024년 추모 연사로 지명받은 바 있다. 바인브룸 연사로서의 선정은 선박유체역학 분야에서 세계 최고 학자의 반열에 올랐음을 인정받는 것이며, 이 분야 연구자들에게는 최고의 영예로 알려져 있다. 올해 데이빗슨 메달 수상이 잇따르며 김 교수의 탁월한 연구 업적이 재확인했다는 평가다. 또한 김 교수는 영국 왕립공학학술원과 사우스햄턴대학의 객원석학, 오사카대학 특임교수, MIT 객원교수 등을 역임한 바 있다. 현재 여러 국제 학회에서 공동의장 및 부의장으로 재임하고 있으며, 국제저널들의 중요 역할을 맡고 있다. 지난달에는 영국의 로이드선급재단(Lloyd’s Register Foundation)이 김용환 교수의 연구팀에 미래 선박의 안전 기술 연구를 위한 약 70억 원의 발전기금을 지원하기로 발표한 바 있다.
    • 종합
    • 교육
    2024-10-16
  • 서울대 이재상 교수팀과 삼성전자 SAIT, OLED 성능 저하 핵심 매커니즘 규명
    서울대학교 공과대학은 전기정보공학부 이재상 교수 연구팀이 삼성전자 SAIT(Samsung Advanced Institute of Technology)와의 공동 연구를 통해 유기 발광다이오드(OLED, Organic Light-Emitting Diode) 성능을 저하시키는 핵심 메커니즘을 규명했다고 밝혔다. 해당 연구 결과는 10월 10일 세계적 권위의 물리 학술지 ‘피지컬 리뷰 X(Physical Review X)’에 게재됐다. 피지컬 리뷰 X는 미국 물리학회(American Physical Society)의 대표적인 오픈 액세스 저널로서, 물리학 전 분야에 걸쳐 한 해 200편 내외의 핵심 성과만을 출간하고(다학제 물리 분야 논문 인용지수(JCI) 상위 2.2%), 이 과정에서 매우 엄격한 심사과정을 거치는 것으로 알려져 있다. 특히 한국의 연구기관이 해당 저널에 공학 분야의 논문을 게재한 것은 매우 이례적인 성과라는 평이다. OLED는 현재 스마트폰, 태블릿, 워치, TV 등 주요 IT 기기의 디스플레이에 활용되고 있으며, 가까운 미래에 가상현실, 차량용, 자유형상 및 신축성 디스플레이 등 사용처가 더욱 확장될 것으로 기대되는 주요 국가 전략기술이다. 그러나 이와 같은 OLED의 산업적 성장을 저해하는 치명적인 기술 장벽이 존재하는데, 바로 소자의 제한적인 발광 효율과 구동 수명, 그리고 이에 따른 번인 현상(Burn-in)이다. 이를 극복하기 위해 서울대-삼성전자 SAIT 연구팀은 OLED 성능을 치명적으로 감소시키는 핵심인자, ‘계면 엑시톤-폴라론 소거(exiton polaron quenching)’ 현상의 존재 가능성을 이론적으로 제시하고 실험적으로 검증하는 데 성공했다. OLED는 다층의 유기반도체 박막으로 이루어진 발광다이오드 소자로, 발광층 내부에 주입된 양·음전하가 엑시톤(양-음전하쌍)을 형성하고, 엑시톤이 방사결합함으로써 빛이 방출되도록 설계돼 있다. 한편 발광층과 인접한 전하수송층 사이에는 미세한 에너지 장벽이 존재하는데, 이는 발광층 내부로 전하 주입을 방해하고 전하를 계면에 축적시키는 요인으로 작용한다. 공동연구팀은 계면에 축적된 전하에 의해 발광층 내부의 엑시톤이 소거되는 기제를 이론적으로 제시하고, 이를 ‘계면 엑시톤-폴라론 소거’ 현상으로 명명했다. 이어서 연구팀은 해당 현상을 독립적으로 관측할 수 있는 실험을 고안해 해당 현상의 3대 결정인자(계면 장벽, 엑시톤-폴라론 거리, 엑시톤 소멸시간)를 밝혀냈다. 특히 주목할 발견은 ‘계면 엑시톤-폴라론 소거’가 OLED 방출광의 색이나 인광, 형광, 지연형광 등 발광방식에 상관없이 보편적으로 일어나는 현상이며, 소자효율 저하의 결정적 요인으로 작용한다는 점이다. 공동 연구팀은 해당 현상의 제어를 통해 적·녹·청 인광 OLED 효율이 최소 50% 이상, 청색 소자의 수명이 70% 이상 증대된 결과를 달성했다. 공동 연구팀의 이번 발견은 ‘엑시톤-폴라론 소거’가 발광층 내부에 국한된 현상이라는 OLED 산·학계의 통념을 뒤집은 중요한 성과로 평가된다. 이번 연구를 통해 해당 현상이 발광층과 전하수송층 사이의 ‘이종계면’에 걸쳐 발생할 수 있으며, 그 효과에 의해 OLED 성능이 치명적으로 감소된다는 사실을 세계 최초로 검증했기 때문이다. 이재상 교수는 “계면 엑시톤-폴라론 소거는 상대적으로 효율이 낮고 수명이 짧은 청색 OLED 상용화를 위해 반드시 극복해야 하는 현상이다. 따라서, 본 연구는 향후 청색 OLED 연구·개발 방향에 기여하는 바가 있을 것으로 예상된다”고 밝혔다. 한편 본 논문의 1저자인 양광모 박사과정 연구원은 이재상 교수의 지도 하에 청색 OLED 수명을 획기적으로 향상시키는 후속연구를 수행하고 있다. 본 연구는 삼성전자 SAIT, 한국연구재단, 한국산업기술기획평가원, 4단계 BK21 사업의 지원으로 수행됐다.
    • 종합
    • 교육
    2024-10-11
비밀번호 :